
Exploring Multi-Output Regression and
Reinforcement Learning for Game Adaptivity

João Álvaro Ferreira
Mestrado Int. em Engenharia Informática e Computação

Faculdade de Engenharia da Universidade do Porto
Porto, Portugal

up201605592@fe.up.pt

João Carlos Maduro
Mestrado Int. em Engenharia Informática e Computação

Faculdade de Engenharia da Universidade do Porto
Porto, Portugal

up201605219@fe.up.pt

João Augusto Lima
Mestrado Int. em Engenharia Informática e Computação

Faculdade de Engenharia da Universidade do Porto
Porto, Portugal

up201605314@fe.up.pt

Mariana Neto
Mestrado Int. em Engenharia Informática e Computação

Faculdade de Engenharia da Universidade do Porto
Porto, Portugal

up201606791@fe.up.pt

Abstract—This document details research made into the sub-
ject of adaptive games, using reinforcement learning and su-
pervised learning methods such as multi-output regression and
individual regression. A prototype of the video game Breakout,
along with simulated personalities, were the basis for data
collection. The research developed produced promising results
for the supervised learning methods, multi-output regression
in particular, which has shown to be a viable method for
implementations of game adaptivity.

Index Terms—machine learning, data mining, game adaptiv-
ity, multi-output regression, reinforcement learning, supervised
learning

I. INTRODUCTION

The growth of the video game industry has made game
adaptivity an increasingly relevant subject for study to prolong
one’s game longevity. One of the easiest forms of adaptivity
is difficulty adjustment in levels[1]. However, this adjustment
is manual and required the input from the developer and the
player, often making a choice with incomplete information,
even before playing the game to assess what each difficulty
level entails, leading to sub-optimal experiences. This task can
be made automatic by modifying the game to accommodate
the different player’s personalities and optimal game flow[2].

Ensuring the players have optimal satisfaction[3] is one of
the most common goals for interactive media, being paramount
for player retention, attracting new players and overall increas-
ing or maintaining a player-base.

This report is an in-depth analysis of research made into
the subject of game adaptivity, using multi-output regression
and reinforcement learning. The techniques were implemented
on data collected in a prototype of the video game Breakout
developed by the researchers, along with diverse and complex
simulated personalities[4]. The aim of this project was to
explore the quality of the current state of the art regarding
game adaptivity and compare the alternatives of multi-output
regression and reinforcement learning.

II. STATE OF THE ART AND OBJECTIVES

A. Adaptivity

In the realm of game adaptivity, the standard is manu-
ally changing the different aspects of games to fit arbitrary
difficulty levels. According to [3] there are many options
to change a game, ranging from changing the world the
player interacts with, to the mechanics of the game and music
elements, to other artificial or simulated elements that the
player may encounter. These changes made to the game can
steer the user into performing according to what the developers
expected [5], and getting the experience and feedback that was
intended[6][7]. In this project, the changes to the parameters
are only made at the start of each game, but in most scenarios
these changes would occur during the game session.

Although options for users to manually adjust their game
experience have also grown more advanced and detailed in re-
cent years, automatic adaptation has been a constant presence
in the industry with much success, such as the case of Mario
Kart[8] and Left 4 Dead[9]. This project will explore how
game adaptivity using data mining techniques can improve a
player’s experience and game flow.

By adapting a game, the players and users of the product
can have different experiences, affecting the way they view,
play and experiment with the game. Several applications of
the adaptive game have been developed for different purposes
and objectives, such as learning environments to teach[10][11]
or to maintain a sustainable player base for the longevity of
the game. These applications of adaptivity alter the different
parameters and mechanics of the game to suit their needs. For
example, in an educational computer game, the objective is
for the player to acquire knowledge while paying, however,
there needs to be a balance between promoting the learning
processing and creating satisfaction and game flow[12].

The main objective of this work is to establish some
performance benchmarks in the field of game adaptivity.



Specifically, the aim is to explore the performance of newer,
less commonly used machine learning techniques such as
multi-output regression and reinforcement learning, which is
a more frequently used approach.

B. Machine learning
In terms of reinforcement learning, this type of machine

learning is more commonly used (within the context of video
games) to enhance the performance of enemies or ”artificial
players”. Several approaches to reinforcement learning are
available, and in this project, we will use the framework Sable
Baselines3[13], which provides implementations of state-of-
the-art reinforcement learning algorithm such as Proximal
Policy Optimization[14].

The main focus of this paper is to utilize and compare
multiple approaches of supervised learning algorithms with
reinforcement learning. These approaches [15] include: build-
ing a single-target output regression model for each of the
outputs and building a multi-target output that takes into
account targets correlation and deliveries the multiple output
variables needed[16]. The topic of multi-output regression
is still a recent topic in terms of machine learning and the
application on adaptivity in video games is still open to results
and experiments.

C. Personalities
Each player demonstrates a certain personality and skill

while playing a game. Consequently, one of the steps in-game
adaptivity is identifying the player profile. Although a human
personality may be very complex, some emotions, feeling[17]
can be correlated with the game and, therefore, with game
flow.

Simulation of an accurate human model is very expensive
computationally and involves many different variables. In this
paper, the simulated player has a static personality and actions
while playing the game, with some of these personas being
based on other work [4].

It is also important to refer that the scope of this project is
limited to first time players and the adaptivity is meant to be
decided early into the play session. Exploring the subject of
game adaptivity as the game is played, or taking into account
the same player’s experience over multiple sessions (possibly
learning the game and getting much better at it, or finding
the mechanics repetitive) was deemed to be too complex of a
situation to add onto an already complex endeavour.

III. METHODOLOGY

In a preliminary stage of this project, research was made
to find a game suitable for our experiments that also provided
users with data or open APIs to the detail and volume of data
required. The game would also have to be simple, and ideally
single-player, so as to not have to deal with the complexities
of match-making (be that in 1v1 or, worse, with large teams)
and with unfairness between different players.

As some our goals hinged on very fine details and the
volume of data required to train a reinforcement learning algo-
rithm is significant, no suitable game was found and instead, an

in-house model of the popular arcade game Breakout was built,
which fits all of the characteristics mentioned. This prototype
was built in Unity, as building a pipeline that allows for data
handling in Python is easy, it has a variety of tools that are
useful for machine learning algorithms, and it is also a very
simple engine to work with. The development of a prototype
also facilitates manipulating the parameters that will then be
used to ”adapt” to a player, such as (in Breakout) ball size
and speed.

Ideally, game session data for training and testing the
algorithms would be collected with real players, publishing
the game in an open platform and allowing users of all kinds
to play it. Then, data would be collected on the game session
and on the user’s satisfaction with via a questionnaire. For this
last step, we decided the Game Experience Questionnaire[18]
would be a suitable reference for questions.

Due to the constraints of this work, a version of the
prototype open to the public ended up not being suitable.
The reasons for this are the low volume of data we’d acquire
(lower than the required for data mining) due to the short
time-span the project is developed in and the much larger
workload than opening a refined version of the prototype to
the public would entail. All of these combined meant that
we’d have to do our data collection in-house as well, using
static but complex personality types[4] in a simulation. These
personality types were designed to emulate real humans: their
inputs are regulated with accurate-to-life APM and reaction
time values, among other parameters, within specific ranges for
different kinds of players[19]. Alongside this, each player type
will also have their own heuristic for how to play (leading to
various playing styles) and different standards for satisfaction
that are logged via questions from the Game Experience
Questionnaire.

The data collection is ran simultaneously with a reinforce-
ment learning model that is built to alter the game parameters
mentioned and then learn from the resulting session. The same
method is used for testing, with a filter for good performances
applied so that the algorithm only learns the correct paths to
take. Once that model gets tested, two separate multi-output
regression models are ran on the reinforcement learning’s test
data to verify how close to its good predictions it is. These
models are different and will be described in the following
sections. Using this method, the multi-output regression may
be limited to the data provided by the reinforcement learning.

A. Prototype

As was mentioned previously, the base for this project was a
prototype of the game Breakout developed in Unity. The goal
of the game is to destroy all of the bricks via bouncing the
ball with the paddle while preventing the ball from touching
the bottom of the screen (which results in an instant loss).

Although some of its characteristics are adaptable, there are
many aspects which are fixed for every game session. These
aspects include the number of bricks being 30, arranged in
3 lines of 10, with a fixed size that fits the game space and
covers an entire horizontal row of the screen. The paddle is 1

2



unit in height and can only be moved across a horizontal line
3 units below the centre of the game area, which itself covers
a fixed 1920x1080 space.

In turn, the adaptable aspects are the height at which the
bricks are placed (1 to 5 units above the centre of the game
space), the paddle’s speed (15 to 35 speed units), the paddle’s
length (10 to 30 units), the ball’s speed (2 to 12 speed units)
and the ball’s size (2 to 6 units of diameter).

The game cycles with this prototype function in a simple
way. Before the game starts, it loads a list of templates of
the personality types that it will generate for each game.
A connection is established with the reinforcement learning
model which then provides values for the aforementioned
parameters, a player is generated from one of the templates
(iterating through the personalities for each round) and the
game starts.

Once each game ends, data about the game gets collected
by the model and logged onto a file: from the parameters
used, to game values such as ”time” or ”amount of ball
bounces”, to the player’s simulated responses to the Game
Experience Questionnaire and the player’s personal values
recorded throughout the game (reaction time, actions per
minute, personality type and paddle safety distance). After
that, a new game starts until all of the simulations are ran.

The cycles themselves are structured with episodes with
each episode having 10 rounds each.

B. Personality System

As the goal of this project is to create a game that can adapt
its characteristics (ball size, paddle length, etc...) in order to
find the best possible fit for the player, a personality system
was created to simulate certain traits that different people may
have. The first part of the system consists in distinguishing the
personalities according to their play style, in accordance with
their physical capabilities. This includes differences in:

• Maximum and Minimum APM (actions per minute)
• Maximum and Minimum reaction time (the difference

between eye and hand)
• Maximum and Minimum paddle safety distance (how

close to the edge of the paddle the player feels com-
fortable playing with)

• Movement heuristic (a personalized heuristic that dic-
tates how each personality analyzes and makes decisions
within the game system)

These characteristics are integrated into the prototype via
the player’s input system. The player only has three input
options, move the paddle to either left or right, or remain in
place. To simulate a realistic human, the movement heuristic
is run at a constant interval of 60/APM seconds, and there’s a
delay corresponding to the reaction time between the decision
of the movement heuristic and the action taking place. The
purpose of the ”paddle safety distance” is to simulate how
comfortable a player feels with the paddle hits. This introduces
a buffer to the length of the paddle. For example, new players
might not feel as safe playing with the edges as there’s a
bigger risk of the ball passing through, so they’ll have a

bigger ”paddle safety distance” which means they’ll consider
a smaller area at the centre of the paddle as safe to hit the ball
with.

There were three-movement heuristics: newbie, experienced
and risky. Newbie’s heuristic is very greedy, it always attempts
to position the paddle directly below the ball as much as
possible and does not consider possible bounces the ball
might take, or aiming the ball in any specific direction. By
contrast, the experienced heuristic calculates where the ball
will cross the paddle’s horizontal axis once the ball starts a
downward descent. Finally, the risky heuristic is specific to one
personality type (”Edgy”) as instead of trying to play with an
area in the centre of the paddle, it tries as much as possible
to hit the ball with the edges of the paddle, leading to more
bounces.

Furthermore, as a way to evaluate a players opinion of a
game and its chosen characteristic, a satisfaction heuristic was
created with the goal of quantifying a player’s overall enjoy-
ment. To fit a system which we thought was already becoming
too complex, we decided to pick four questions from the
”game core” section of the Game Experience Questionnaire
that we believed to be most relevant to ”Breakout”. These
questions are represented by the satisfaction heuristic’s four
main characteristics: content, skilful, occupied and difficulty,
the values of which vary between 0 and 5. The overall
satisfaction is calculated using the following equation:

satisfaction = content ∗ C1 + skillful ∗ C2

+occupied ∗ C3 + hard ∗ C4

C1, C2, C3, C4 - coefficients that attribute different weights
to the characteristics Since the highest possible score is 20,
and we have four characteristics, the coefficients values vary
between [0.25,1.75], considering that

C1 + C2 + C3 + C4 = 4

always has to hold.
The satisfaction heuristics are unique to each personality,

even though there may be some similarities (such as with
”Newbie” and ”Gifted Newbie”). Each personality values
different attributes to calculate each variable (for example,
Competitive values winning or losing more for the Content
variable, while Newbie places more importance on the time
played). The coefficients also vary in each personality to
emulate how different kinds of players value different things
in their game experiences. For example, a Competitive player
values a game’s difficulty being fitting to his skills more than
a Newbie does.

Personalities Physical
Attributes

Movement
Heuristic

Newbie Slow Newbie
Gifted Newbie Fast Newbie
Competitive Fast Experienced
Edgy Fast Risky
Experienced Slow Experienced
Fast Learner Adaptive* Newbie

3



*Fast Learner improves their reaction time and APM as the
game timer increases.

C. Pipeline

Figure 1. Pipeline scheme

The figure above is a visual representation of the pipeline
of this experiment.

• This process will run a total of t simulation episodes,
where 75% of them are used for training and the remain-
ing 25% are used for testing purposes.

• For every training episode, a Reinforcement Learning
Agent will receive the parameters of the player’s per-
sonality in order to predict the best game parameters and
submit them to run the simulation. After finishing the
episode the reward will be based on the satisfaction of
the player. The objective of the training is to learn the
best parameters to maximize the satisfaction of all types
of players.

• Parallel to the previous step, all the game data is be-
ing stored in a database including the characteristics of
the player’s personality, the game’s parameters and the
player’s satisfaction.

• After the ending of the training stage, the data collected
will be filtered to retrieve only the episodes with the right
characteristics to train the Supervised Learning Models.
The following graph represents how the filter works. To
better visualize the logic behind the filter in 2 dimensions,
we will assume only two characteristics Characteristic
1 and Characteristic 2.

Figure 2. Game Data Filter Representation

To optimize the supervised learning models’ pattern
detection, we only intend to select the game episodes
where the satisfaction is higher or equal to 14, including
its neighbours in a distance equal or lower than 10.
If the episode has an ideal value of satisfaction but is
surrounded by episodes with low satisfaction, then it will
be excluded.

• After filtered, two different supervised learning models
will train with it. These models include a multi-output
regression random forest and a group of multiple single-
output random forest models to predict individually every
single game parameter.

• In the testing stage, the remaining 25% of the total
number of simulations (t) will resume. The RL Agent
this time will only predict the game parameters using the
player’s personality, but won’t train anymore. This data
will be collected too but in a separate database.

• Then both supervised learning models will make their
predictions to all the testing episodes, using only the
player’s personality as features, predicting new game
parameters as an alternative to the ones predicted by the
RL Agent.

• To evaluate the performance of the supervised learning
models, we then measure the value of RMSE to every
label and the global RMSE, using the values predicted
by the reinforcement learning agent as a reference.
The episodes used for evaluation are the test episodes
where the RL Agent was able to achieve a satisfaction
higher or equal to 14. These are the episodes where
the reinforcement learning agent was able to converge
in better policies and are the base reference values to
evaluate the supervised learning models. If in an episode,
the agent did not achieve this condition, the episode won’t
be used in the evaluation.

4



D. Reinforcement Learning

Reinforcement learning has shown success at resolving tasks
that requires the understanding of the policies and rules of
the world, to try to maximize a reward function. One of
these successful algorithms is the proximal policy optimization
(PPO), that can be used in training game’s artificial players and
enemies. The proximal policy optimization is an algorithm that
uses policy gradient methods to find an optimal policy for a
given reward. However, these type of algorithms requires a lot
of time steps and are sensitive to step size.

For this project, the reinforcement learning algorithm was
adapted to fit the need of the game. The action that can be
taken is at the start of each game in the form of the game
parameters. Then the game is played and observations are
made at the end of the game. These observations are delivered
to the algorithm, as well as with the reward value. The next set
of parameters are calculated and delivered to the next game.

E. Supervised Learning

• Multi-Output Regression
In this experiment, it will be used only one model to
predict the values of multiple labels, while taking into
consideration that there is a pattern correlating them.
The chosen algorithm to predict the labels was the
Random Forest, which supports native multi-output re-
gression. For these scenarios, the model stores multiple
output values in leaves, instead of only one and uses
a splitting criterion that computes the average reduction
across all the outputs. In general, all tree-based methods
make use of this logic.[20]
To measure the performance of the multi-output predic-
tion, the calculation of the Root-mean-square deviation
(RMSE) of every predicted label is used, along with the
mean of all of the RMSEs to obtain a global RMSE.

• Wrapped Individual Regression
Alternatively, multiple individuals supervised learning
models are wrapped together to receive the same features
as input, but each one of them will calculate every target
label, in an independently, assuming that there is no
pattern correlating them.
This strategy is expected to be more intensive in memory,
while the previous one to be more optimized.
To measure the performance of this strategy, the strategy
explained above will be used in this scenario too. If there
isn’t a pattern correlating the multiple labels, then both
strategies will have similar values of RMSE.

IV. RESULTS

The following tables are a small analysis of the results
obtained in the experiments, divided according to the person-
ality type they involved. There is also a table of the overall
results and one that describes the RMSE for both supervised
learning algorithms, detailing the RMSE for each variable and
the global RMSE. These tables are a result of an extensive
data analysis conducted after multiple experiments, with 7004
game sessions for training and 1593 game sessions for testing,

within the reinforcement learning algorithm. The full data
collected can be found at the group’s repository[21]. Values in
the tables are presented with their average value (avg) and the
standard deviation (dev). Due to an error with the splitting of
game rounds by personality type, the ”fast learner” and ”edgy”
personality types had half as many game rounds as every other
personality type.

Newbie Results
Training Test

Brick Height 2.9 avg, 1.5 dev 2.2 avg, 1.3 dev
Paddle Speed 17.7 avg, 5.1 dev 16.2 avg, 3.2 dev
Paddle Length 28.3 avg, 4.6 dev, 28.4 avg, 4.8 dev
Ball Speed 4 avg, 3.4 dev 2.9 avg, 2.6 dev
Ball Size 5 avg, 1.3 dev 5.1 avg, 1.1 dev
Wins 3/1401 107/314
Time 19.2 avg, 21.2 dev 55.6 avg, 36.8 dev
Satisfaction 9.4 avg, 4.3 dev 15.2 avg, 3.6 dev

Competitive Results
Training Test

Brick Height 3 avg, 1.6 dev 2.2 avg, 1.4 dev
Paddle Speed 17.6 avg, 5 dev 16.4 avg, 3.3 dev
Paddle Length 28.2 avg, 4.7 dev, 28.4 avg, 5.1 dev
Ball Speed 3.9 avg, 3.4 dev 2.7 avg, 2.4 dev
Ball Size 5 avg, 1.3 dev 4.8 avg, 3.5 dev
Wins 30/1401 256/319
Time 25.4 avg, 23 dev 94.7 avg, 55.5 dev
Satisfaction 8.4 avg, 2.4 dev 12.5 avg, 2.7 dev

Experienced Results
Training Test

Brick Height 2.9 avg, 1.5 dev 2.2 avg, 1.3 dev
Paddle Speed 17.6 avg, 4.9 dev 16.8 avg, 3.9 dev
Paddle Length 28.3 avg, 4.6 dev, 28.4 avg, 5.0 dev
Ball Speed 4.2 avg, 3.5 dev 2.9 avg, 2.6 dev
Ball Size 5 avg, 1.3 dev 5.2 avg, 1.1 dev
Wins 8/1401 95/320
Time 18 avg, 1.3 dev 51.4 avg, 39.4 dev
Satisfaction 10.1 avg, 1.9 dev 12.3 avg, 3.1 dev

Edgy Results
Training Test

Brick Height 2.8 avg, 1.5 dev 2.2 avg, 1.4 dev
Paddle Speed 17.4 avg, 4.8 dev 16.7 avg, 3.6 dev
Paddle Length 28.4 avg, 4.4 dev, 28.5 avg, 5.0 dev
Ball Speed 4.2 avg, 3.5 dev 2.9 avg, 2.6 dev
Ball Size 5.0 avg, 1.3 dev 5.2 avg, 1.1 dev
Wins 0/700 15/160
Time 18.5 avg, 1.3 dev 34.2 avg, 25.9 dev
Satisfaction 9.1 avg, 2.0 dev 11.0 avg, 2.7 dev

Gifted Newbie Results
Training Test

Brick Height 2.9 avg, 1.5 dev 2.0 avg, 1.3 dev
Paddle Speed 17.7 avg, 5.0 dev 16.3 avg, 3.2 dev
Paddle Length 28.2 avg, 4.8 dev, 28.5 avg, 4.8 dev
Ball Speed 3.9 avg, 3.4 dev 2.8 avg, 2.5 dev
Ball Size 5.0 avg, 1.3 dev 5.2 avg, 1.1 dev
Wins 32/1401 273/319
Time 26.6 avg, 32.7 dev 90.0 avg, 47.2 dev
Satisfaction 10.0 avg, 2.9 dev 14.8 avg, 2.5 dev

5



Fast Learner Results
Training Test

Brick Height 2.8 avg, 1.5 dev 2.2 avg, 1.4 dev
Paddle Speed 17.5 avg, 7.8 dev 16.4 avg, 3.5 dev
Paddle Length 28.0 avg, 5.0 dev, 28.6 avg, 4.6 dev
Ball Speed 3.9 avg, 3.4 dev 2.9 avg, 2.7 dev
Ball Size 5.0 avg, 1.3 dev 5.4 avg, 0.9 dev
Wins 32/700 132/160
Time 32.4 avg, 27.9 dev 81.1 avg, 44.1 dev
Satisfaction 11.6 avg, 3.2 dev 14.8 avg, 2.6 dev

Overall Results
Training Test

Brick Height 2.9 avg, 1.5 dev 2.2 avg, 1.3 dev
Paddle Speed 17.6 avg, 7.8 dev 16.5 avg, 3.5 dev
Paddle Length 28.2 avg, 4.7 dev, 28.5 avg, 4.9 dev
Ball Speed 4 avg, 3.4 dev 2.8 avg, 2.6 dev
Ball Size 4.9 avg, 1.3 dev 5.3 avg, 1.1 dev
Wins 105/7004 878/1593
Satisfaction 9.6 avg, 3.1 dev 13.5 avg, 3.3 dev

Multi Output and Individual Regression Results
Multi Output RMSE Individual Regression

RMSE
Brick Height 1.293 1.277
Paddle Speed 2.836 2.799
Paddle Length 1.092 1.076
Ball Speed 1.415 1.575
Ball Size 1.039 1.038
Global 1.67 1.68

V. RESULT DISCUSSION

• Due to the similarities of the values of RMSE obtained in
both strategies, we can conclude that their performance
in this problem is similar. It is then preferable to use the
multi-output regression due to being more lightweight in
its use of machine resources.

• It is essential to note that the RMSE values for ball speed
and paddle speed are the ones with the most variation.
This might be the importance of object speed related
to the other variables and how there might be more
variation due to the different movement heuristics by each
personality type.

• It is clear from a small overview of the results that the
tendency of the reinforcement learning algorithm was
towards smaller values on brick height, paddle speed, and
ball speed and higher values on paddle length and ball
size. This means that the ”strategy” the reinforcement
learning algorithm maximizes satisfaction in Breakout
within the constraints and feedback of our model. Fur-
thermore, it seems the algorithm has determined what is
the best compromise in a way to maximize a sum of the
maximization algorithms, and thus ended up fitting the
parameters to the preference of personalities that are more
easily pleased (Newbie, Gifted Newbie, Fast Learner) at
the detriment of a personality like ”Competitive” that
has a higher baseline for expectations but requires higher
depth and difficulty to get pleased.

• Cross-referencing the results tables with the information
listed in table 1, and comparing the win ratios across
”Newbie”, ”Experienced”, ”Gifted Newbie” and ”Com-
petitive”, it is possible to infer that the player’s physical

traits ended up being more relevant than their move-
ment heuristic. This can also be noticed by analyzing
the average times for each personality type mentioned,
with ”Competitive” and ”Gifted Newbie” having more
in common than ”Competitive” and ”Experienced”, for
example.

• We can infer that there is little correlation between the
labels and only small patterns, due to the multi-output
regressor having slightly lower values of RMSE.

• Through the analysis of the preferable game parame-
ters to each type of personality, we can notice that
the values of each table don’t differ as much as we
expected. It is possible that the reinforcement learning
agent, instead of discovering a policy that maximizes each
personality’s satisfaction, tried to find a policy that could
consensually satisfy all of the personalities. A possible
strategy to force the maximization of the satisfaction of
each personality type, instead of the maximization of the
overall satisfaction is the division of the player data into
clusters representing the personality type and application
of individual reinforcement learning models onto each
cluster; then, new players would be classified into each
of the clusters naturally, and the appropriate model for
defining the parameters would be used.

• The RMSE values for each variable are always smaller
than the respective deviation values. As such, the
method’s results could be considered comparable to the
ones obtained with reinforcement learning.

VI. CONCLUSIONS

In this study, we approach the topic of the recent and rapidly
developing field concerning the use of machine learning to
enhance a user’s experience while playing video games. Our
goal was to analyze methodologies like multi-output super-
vised learning models and individualized single-output models
compared to reinforcement learning.

The basis for our experiment was the game Breakout,
slightly modified to better fit our criteria. Reinforcement
Learning seems to be a valuable tool when searching for
an optimal solution in a changing environment despite some
training difficulties. Developing a game with an RL Agent is
a challenging and promising prospect, and its use could even
begin to extend past the reality of video games. Our analysis
led to satisfying conclusions in regards to its effectiveness.
Still, some changes like a massively increased amount of data,
further experiments with hyperparameter tuning, alternative
implementations, or raising the minimum satisfaction required
for a game to be considered for testing (thus having a higher
quality filter) could lead to better results.

Our results show that both supervised learning methods
analyzed are viable and comparable to reinforcement learning,
with multi-output regression having a very slight advantage,
which was unexpected. This can be explained due to the
number of episodes being too small. Future exploration of this
subject will, ideally, feature research methods and metrics that
allow for the evaluation of the supervised learning models’

6



results in absolute terms. That way, we could make a more
in-depth comparison of their performance with the reinforce-
ment learning agent. Due to time constraints, we could not
implement metrics that would better analyze this, such as
separately simulating the games with the parameters chosen
by the supervised learning methods.

Finally, in future work, it is imperative to use data from real
humans instead of a simulation. The flaws of our personality
system as it compares to real people put a caveat on definite
conclusions derived from our results.

ACKNOWLEDGMENT

We would like to show our acknowledgement to some of our
professors that accompanied the development of this project,
namely professors João Jacob, Zafeiris Kokkinogenis and
Carlos Soares from Faculty of Engineering of the University
of Porto. They were responsible for the guidelines that helped
kick-start this project and helped orient its course, so their
collaboration is appreciated.

REFERENCES

[1] R. Hunicke and V. Chapman. AI for dynamic difficulty adjustment in
games. In AAAI Workshop - Technical Report, volume WS-04-04, pages
91–96, 2004.

[2] A. Streicher and J.D. Smeddinck. Personalized and adaptive serious
games, volume 9970 LNCS. 2016.

[3] S. Bakkes, C.T. Tan, and Y. Pisan. Personalised gaming: A motivation
and overview of literature. In ACM International Conference Proceeding
Series, 2012.

[4] X. Fang and F. Zhao. Personality and enjoyment of computer game
play. Computers in Industry, 61(4):342–349, 2010.

[5] R. Lopes and R. Bidarra. Adaptivity challenges in games and simula-
tions: A survey. IEEE Transactions on Computational Intelligence and
AI in Games, 3(2):85–99, 2011.

[6] J. Frommel, F. Fischbach, K. Rogers, and M. Weber. Emotion-based
Dynamic Difficulty Adjustment Using Parameterized Difficulty and Self-
Reports of Emotion. In CHI PLAY 2018 - Proceedings of the 2018
Annual Symposium on Computer-Human Interaction in Play, pages 173–
185, 2018.

[7] T.J.W. Tijs, D. Brokken, and W.A. Ijsselsteijn. Dynamic game balancing
by recognizing affect, volume 5294 LNCS. 2008.

[8] Nintendo EAD. Mario Kart Wii, 2008.
[9] Lars Jensvold. Left 4 Dead, 2011.

[10] B. Monterrat, E. Lavoué, and S. George. Motivation for learning:
Adaptive gamification for web-based learning environments. In CSEDU
2014 - Proceedings of the 6th International Conference on Computer
Supported Education, volume 1, pages 117–125, 2014.

[11] B. Magerko, C. Heeter, B. Medler, and J. Fitzgerald. Intelligent
adaptation of digital game-based learning. In ACM Future Play 2008
International Academic Conference on the Future of Game Design and
Technology, Future Play: Research, Play, Share, pages 200–203, 2008.

[12] D. Hooshyar, L. Malva, Y. Yang, M. Pedaste, M. Wang, and H. Lim.
An adaptive educational computer game: Effects on students’ knowledge
and learning attitude in computational thinking. Computers in Human
Behavior, 114, 2021.

[13] Noah Raffin, Antonin and Hill, Ashley and Ernestus, Maximilian and
Gleave, Adam and Kanervisto, Anssi and Dormann. Stable Baselines3,
2019.

[14] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg
Klimov. Proximal policy optimization algorithms, jul 2017.

[15] G. Melki, A. Cano, V. Kecman, and S. Ventura. Multi-target support
vector regression via correlation regressor chains. Information Sciences,
415-416:53–69, 2017.

[16] Willem Waegeman, Krzysztof Dembczyński, and Eyke Hüllermeier.
Multi-target prediction: a unifying view on problems and methods. Data
Mining and Knowledge Discovery, 33(2):293–324, 2019.

[17] L.E. Nacke, M.N. Grimshaw, and C.A. Lindley. More than a feeling:
Measurement of sonic user experience and psychophysiology in a first-
person shooter game. Interacting with Computers, 22(5):336–343, 2010.

[18] W A Ijsselsteijn, De Kort, and Poels. GAME EXPERIENCE QUES-
TIONNAIRE. Technical report, 2013.

[19] S.C.J. Bakkes, P.H.M. Spronck, and G. van Lankveld. Player behavioural
modelling for video games. Entertainment Computing, 3(3):71–79,
2012.

[20] Dragi Kocev, Celine Vens, Jan Struyf, and Sašo Džeroski. Tree ensem-
bles for predicting structured outputs. Pattern Recognition, 46(3):817–
833, 2013.

[21] João Carlos Maduro Mariana Neto João Álvaro Fer-
reira, João Augusto Lima. Source Code Repository.
https://github.com/JoaoAlvaroFerreira/BreakoutMining/, 2021.

7


